Forecasting with non-homogeneous hidden Markov models
نویسندگان
چکیده
We present a Bayesian forecasting methodology of discrete-time finite statespace hidden Markov models with non-constant transition matrix that depends on a set of exogenous covariates. We describe an MCMC reversible jump algorithm for predictive inference, allowing for model uncertainty regarding the set of covariates that affect the transition matrix. We apply our models to interest rates and we show that our general model formulation improves the predictive ability of standard homogeneous hidden Markov models.
منابع مشابه
A new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model
The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging. Weather radars are capable of detecting and displaying storm-related ...
متن کاملClimate change scenarios generated by using GCM outputs and statistical downscaling in an arid region
Two statistical downscaling models, the non-homogeneous hidden Markov model (NHMM) and the Statistical Down–Scaling Model (SDSM) were used to generate future scenarios of both mean and extremes in the Tarim River basin,which were based on nine combined scenarios including three general circulation models (GCMs) (CSIRO30, ECHAM5,and GFDL21) predictor sets and three special report on emission sce...
متن کاملRelative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain
In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...
متن کاملA Probabilistic Short-Term Water Demand Forecasting Model Based on the Markov Chain
This paper proposes a short-term water demand forecasting method based on the use of the Markov chain. This method provides estimates of future demands by calculating probabilities that the future demand value will fall within pre-assigned intervals covering the expected total variability. More specifically, two models based on homogeneous and non-homogeneous Markov chains were developed and pr...
متن کاملApplying Semi-Markov Models for forecasting the Triple Dimensions of Next Earthquake Occurrences: with Case Study in Iran Area
In this paper Semi-Markov models are used to forecast the triple dimensions of next earthquake occurrences. Each earthquake can be investigated in three dimensions including temporal, spatial and magnitude. Semi-Markov models can be used for earthquake forecasting in each arbitrary area and each area can be divided into several zones. In Semi-Markov models each zone can be considered as a sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 2011